Molecular Dynamics of the Transport of Ions in a Synthetic Channel
نویسنده
چکیده
Molecular dynamics investigations of ions in certain non-bulk media predict that they are capable of significantly greater mobilities than when in the liquid state. The entries of Li, Na, and K ions from electrolyte media into proposed synthetic channels consisting of fourteen 15-crownether-5 (CE) rings bonded in stacked conformations are described and their subsequent dynamics in the channel discussed. The importance of channel flexibility is established by investigating two CE channels that are structurally similar but vary in the rigidity with which their rings are connected. The dynamics of cation channel migrants are simulated across a bilayer membrane between two bulk aqueous salt solutions and also when the channel floats freely in an aqueous medium. Various features of ion behaviour are investigated in the presence, and in the absence, of an electric field applied along the channel axis. The novel oscillatory behaviour of the ions in the channel is investigated, together with the possibility of their exits into the liquid medium. The frictional forces opposing the ion trajectories are calculated, found to be ~10 nN and attempts to formulate frictional laws for nanoscale systems are discussed.
منابع مشابه
Simulation study of the transport properties of ions through ion channels serving as primary components of a nanobiosensor
Ion channels are naturally occurring pores through the proteins that regulate the passage of ions and thus maintain the concentration of ions inside and outside the cell. The ion channels control many physiological functions and they can show selectivity for a specific ion. Ion channels are mostly observed in nerve cells and muscle cells. The influx of ions into cells can be regulated by a gate...
متن کاملSimulation study of the transport properties of ions through ion channels serving as primary components of a nanobiosensor
Ion channels are naturally occurring pores through the proteins that regulate the passage of ions and thus maintain the concentration of ions inside and outside the cell. The ion channels control many physiological functions and they can show selectivity for a specific ion. Ion channels are mostly observed in nerve cells and muscle cells. The influx of ions into cells can be regulated by a gate...
متن کاملA molecular dynamics simulation of water transport through C and SiC nanotubes: Application for desalination
In this work the conduction of ion-water solution through two discrete bundles of armchair carbon and silicon carbide nanotubes, as useful membranes for water desalination, is studied. In order that studies on different types of nanotubes be comparable, the chiral vectors of C and Si-C nanotubes are selected as (7,7) and (5,5), respectively, so that a similar volume of fluid is investigated ...
متن کاملA molecular dynamics simulation of water transport through C and SiC nanotubes: Application for desalination
In this work the conduction of ion-water solution through two discrete bundles of armchair carbon and silicon carbide nanotubes, as useful membranes for water desalination, is studied. In order that studies on different types of nanotubes be comparable, the chiral vectors of C and Si-C nanotubes are selected as (7,7) and (5,5), respectively, so that a similar volume of fluid is investigated ...
متن کاملمدلسازی اثر میدان الکتریکی بر دینامیک یونهای کلسیم درون کانال یونی کلسیم
Calcium channels are cell membrane proteins that play an important role in control the Ca ion flux through the membrane. In this study, the effect of external constant electric field on the dynamics of calcium ions in a L-type channel, located within a stochastically fluctuating medium, is modeled via the application of the molecular dynamics (MD) simulation method. The obtained results show th...
متن کاملEffects of different atomistic water models on the velocity profile and density number of Poiseuille flow in a nano-channel: Molecular Dynamic Simulation
In the current study, five different atomistic water models (AWMs) are implemented, In order to investigate the impact of AWMs treatment on the water velocity profile and density number. For this purpose, Molecular dynamics simulation (MDS) of Poiseuille flow in a nano-channel is conducted. Considered AWMs are SPC/E, TIP3P, TIP4P, TIP4PFQ and TIP5P. To assessment of the ability of each model in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014